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ABSTRACT

The efficiency of a parallel implementation of the conjugate gradient method precon-
ditioned by an incomplete Cholesky factorization can vary dramatically depending on
the column ordering chosen. One method to minimize the number of major parallel
steps is to choose an ordering based on a coloring of the symmetric graph representing
the nonzero adjacency structure of the matrix. In this paper, we compare the perfor-
mance of the preconditioned conjugate gradient method using these coloring orderings
with a number of standard orderings on matrices arising from finite element models.
Because optimal colorings for these systems may not be known a priori, we employ a
graph coloring heuristic to obtain consistent colorings. Based on lower bounds obtained
from the local structure of these systems, we find that the colorings determined by the
heuristic are nearly optimal. For these problems, we find that the increase in paral-
lelism afforded by the coloring-based orderings more than offsets any increase in the
number of iterations required for the convergence of the conjugate gradient algorithm.
We give results from the Intel iPSC/860 to support our claims.
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1. Introduction. The preconditioned conjugate gradient method [13] is one of
the most successtul iterative methods for solving large, sparse, symmetric, positive-
definite linear systems. A preconditioner that has been shown to be very effective for a
wide variety of problems is the incomplete Cholesky factorization [18]. Recently, several
authors [5, 7, 20, 22] have examined the effect of multicoloring based matrix orderings
on the convergence properties of iterative methods. However, this work has considered
only problems generated from regular grids, for which an optimal coloring is known «
priori. These problems generate M-matrices [19] that are not representative of general
systems of equations for which the straightforward incomplete Cholesky factorization
may not exist.

In this paper, we consider sparse linear systems that arise both from finite element
models and standard grid problems. For many of the former problems, optimal mul-
ticolorings are not known. In general, the determination of an optimal coloring is an
NP-hard problem [8]. Thus, we have explored the use of graph coloring heuristics to
obtain the desired orderings. Our experimental results show that the combination of
incomplete factorization and coloring heuristics results in a parallel preconditioner that
is applicable to the symmetric, positive-definite matrices arising in many applications.
We also compare the effectiveness of the coloring heuristics to some standard orderings:
minimum degree, reverse Cuthill-McKee, and nested dissection.

The parallelism inherent in computing and applying the preconditioner is limited
by the solution of the triangular systems generated by the incomplete Cholesky factors
[22]. It was noted by Schreiber and Tang [21] that if the nonzero structure of the
triangular factors is identical to that of the original matrix, the minimum number
of major parallel steps possible in the solution of the triangular system is given by
the chromatic number of the symmetric adjacency graph representing those nonzeros.
Thus, given the nonzero structure of a matrix A, one can generate greater parallelism
by computing a permutation matrix, P, based on a coloring of the symmetric graph
G/(A). The incomplete Cholesky factor L of the permuted matrix PAPT is computed,
instead of the factor based on the original matrix A.

In this permutation, vertices of the same color are grouped and ordered sequen-
tially. As a consequence, during the triangular system solves, the unknowns corre-
sponding to these vertices can be solved for in parallel, after the updates from previous
color groups have been performed. The result of Schreiber and Tang states that the
minimum number of mherently sequential computational steps required to solve either
of the triangular systems, Ly = bor L2 = y, is given by the minimum possible number
of colors, or chromatic number, of the graph.

We note that this bound on the number of communication steps assumes that only
vector operations are performed during the triangular systems solves. This assumption
is equivalent to restricting oneself to a fine-grained parallel computational model, where
we assign each unknown to a different processor. When many unknowns are assigned to
a single processor, it is possible to reduce the number of communication steps by solving
non-diagonal submatrices of I on individual processors at each step. In this case, the
minimum number of communication steps is given by a coloring of the quotient graph
obtained from the partitioning of unknowns to processors. This approach can lead
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to load-balancing problems, however, and our main objective is the demonstration of
scalable performance. Thus, in our current implementation, we allow only the solution
of diagonal systems between communication steps.

The combination of graph coloring and incomplete factorization gives a parallel
algorithm that is scalable as defined in [11]. In general, for graphs arising from physical
models, the maximum degree of any node is bounded independently from the number
of nodes. Because the number of colors is bounded by the maximum degree of a node,
the number of parallel steps is also bounded independently from the problem size.
The computation rate per processor should therefore be constant as the number of
processors increases, given a fixed problem size per processor.

This matrix permutation is reminiscent of the reorderings done to minimize the fill
in a direct factorization. However, in an incomplete factorization, fill that corresponds
to initial zeros of the matrix is ignored. Instead, the permutation is chosen to minimize
the number of communication steps inherent in the solution of the triangular systems
generated by the incomplete factorization.

It is important to note that the scalability results presented in this paper apply
to most classical iterative methods. The successive overrelaxation (SOR) method with
consistent ordering! could be implemented in a scalable multi-level algorithm using
graph coloring, as briefly outlined in [17]. One could also use the symmetric suc-
cessive overrelaxation method (SSOR) as a preconditioner for the conjugate gradient
algorithm, or as a stand-alone iterative method, and obtain the same communication
complexity. We have chosen to implement incomplete Cholesky as a preconditioner
because we have observed that it provides a more effective preconditioner for the ap-
plications with which we have been concerned.

The organization of this paper is as follows. In Section 2 we briefly present some
important issues in computing graph colorings, and we review the coloring heuristic
that we have employed in our experiments. In Section 3 we present and discuss an
execution time model for the triangular matrix solutions used in the incomplete fac-
torization algorithm. In Section 4 we introduce a suite of test problems and present
experimental results. Finally, in Section 5 we summarize our research and suggest areas
for future investigation.

2. Coloring Heuristics. Given the nonzero structure of an n x n symmetric
matrix A, one can associate the symmetric graph G(A) = (V, E) with the matrix,
where the vertex set is given by V = {1,...,n} and the edge set is given by F =
{(2,7) | Aij # 0, and ¢ # j}. We say that the function o : V. — {1,...,s} is an
s-coloring of GI(A), if o(¢) # o(y) for all edges (7, ) in F. The minimum possible value
for s is known as the chromatic number of G(A), which we denote as y(G).

The question of whether a general graph GG(A) is s-colorable is NP-complete [8]. It
is known that unless P = NP, there does not exist a polynomial approximation scheme
for solving the graph coloring problem [§8]. In fact, the best polynomial time heuristic
known [14] can theoretically guarantee a coloring of only size ¢(n/logn) x(G), where

1 'With a consistently ordered matrix, it is straightforward to determine the optimal relaxation
parameter [12].



¢ 1s some constant.

It is therefore rather surprising that a coloring heuristic could perform well in
practice. However, for the problems considered in this paper, we find that the heuristics
obtain colorings only slightly worse than a lower bound determined from the local
structure of the graphs considered. To obtain this lower bound, we employ the following
well-known result which bounds the chromatic number by the size of any complete
subgraph in G.

Given a subset V' of the vertices V, the induced subgraph G' = (V/,E/) of G
contains the edges in the set B = { (,7) | (i,j) € E, and i,j € V'}. A complete
subgraph of size r, which we call an r-clique, is a subset V' of V, with [V'| = r, for
which every possible edge exists in the induced subgraph. Since the r vertices in an
r-clique must be assigned different colors, we simply state the following well-known
lemma.

LEMMA 2.1. If G contains an r-clique, then x(G) > r.

The matrices we have considered for our experiments arise from finite element
models. We say that the finite element model contains an r-element if there is an
element in the model that contains r directly interacting independent variables. Thus,
in the graph representing the corresponding linear system, we obtain an r-clique asso-
ciated with this r-element. By the above lemma, this clique reveals to a lower bound
for the chromatic number of the graph GG(A). The advantage of this observation is that
it is usually straightforward to determine the maximum sized r-element in the finite
element model.

COROLLARY 2.2. If the finite element model contains an r-element, x(G) > r.

Frequently, each node in the finite element model may have ¢ unknowns associated
with it. In the matrix A, unknowns associated with the same node in the finite element
model are usually structurally identical. These ¢ identical unknowns can be colored
the same color if one is willing to solve block diagonal submatrices of L, rather than
diagonal submatrices [21]. If this approach is used and each node in the model has
¢ structurally identical unknowns, the minimum number of major parallel steps could
be reduced to x(G)/q. In our demonstration of scalability, we have not chosen this
approach.

It is known that an optimal coloring can be obtained via a greedy heuristic if the
vertices are visited in the correct order [1]. The basic structure of the greedy heuristic
is the following.

GREEDY HEURISTIC. Compute a vertex ordering {vi,...,v,} for V. For i =
L,...,n, set o(v;) equal to the smallest available consistent color.

The maximum degree of the graph determines an upper bound for the chromatic
number [1]. Let A(G) = max,ev deg(v), where deg(v) is the degree of vertex v in
(/. This upper bound is given by v(G) < A(G) + 1. Note that a greedy heuristic
will always satisfy this bound. Also, independent of the size of system, the graphs
arising from the applications we consider have bounded degree. Thus, the colorings
determined by a greedy heuristic will also be bounded.

The only aspect of the greedy heuristic that must be specified is the method
for obtaining the initial vertex ordering. Several strategies for obtaining this vertex
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ordering have been proposed in work by other authors. Two of the most effective and
efficient strategies proposed are orderings of the vertices by saturation degree and by
incidence degree.

The saturation degree ordering (SDO) heuristic was first proposed by Brélaz [2]
and is defined as follows. Suppose that vertices vy, ...,v;_1 have been chosen. Vertex
v;, the next vertex chosen, is a vertex adjacent to the maximum number of different
colors in the vertex set {vq,...,v,_1}. The SDO heuristic can be implemented to run
in time proportional to 3, oy deg*(v).

A modification of the SDO heuristic, the incidence degree ordering (IDO) heuristic,
was suggested by Coleman and Moré in their work [4] on using coloring heuristics to
obtain consistent partitions for use in Jacobian estimation. Again suppose that vertices
v1,...,0;_1 have been chosen. Vertex v; is chosen to be a vertex whose degree is a
maximum in the induced subgraph of G with vertices {vq,...,v;,_1}. The IDO heuristic
has the desirable property that it can be implemented to run in a time proportional
to Y- ,ev deg(v), or the number of nonzeros in the matrix. This heuristic was found by
Coleman and Moré [4] to obtain the best colorings, for a linear time heuristic, over a
wide variety of problems.

The computational cost of these graph coloring heuristics is modest compared to
the time required to compute the incomplete factors and repeatedly solve the resulting
triangular systems. For the results presented in this paper, the IDO heuristic was used
to obtain the graph colorings used in the matrix reorderings. However, we note that
recently a scalable, parallel coloring heuristic has been developed [16] that is able to
determine colorings comparable to these sequential heuristics. In a complete parallel
implementation, the use of a parallel heuristic is preferable; we have used the sequential
coloring heuristic because our comparison is with other sequential ordering heuristics.

3. Analytic Execution Time Model. In this section we present a model of the
computational complexity of a parallel implementation of the solution of the triangular
systems involving the incomplete Cholesky factors. First we review the connection
between a coloring of the graph G, and the solution of a triangular system with the
nonzero structure corresponding to this graph.

Given an s-coloring o of (¢, we define a directed graph D, = (V, F) as follows. For
each edge, (u,v) € E, construct the directed edge, <x,y> € F, directed from z to y,
where o(x) < o(y) and {x,y} = {u,v}. This construction is well defined because there
cannot exist an edge (u,v) € F with o(u) = o(v), since o is a coloring of G.

By this construction, the directed graph D, is acyclic. In the discussion that
follows, we assume, for notational simplicity, that the component indices v, w of vectors
and matrices correspond to a topological ordering of this directed acyclic graph (DAG).
The complexity of traversal of the DAG, D,, can be seen to be equivalent to the
complexity of solution of the lower triangular system Ly = b, where L is the incomplete
Cholesky factor. In the standard forward elimination algorithm the traversal of the
edge <w,v> in D corresponds to the computational step

(31) bu — bv - vayw .



Likewise, each vertex v in the DAG corresponds to the computational step
(3.2) Yy — by /Ly, .

For vertices w and v with o(w) = o(v), the computation of y, and y,, as given
in equation (3.2), can be done in parallel, given that the updates to b, and b, have
been completed. Thus, the triangular system may be solved in parallel with y, major
communication steps. An outline of the parallel algorithm executed by each processor
for forward elimination is given in Figure 1. In this algorithm the function proc(v)
returns the processor assigned the v-th component of y; a processor’s own processor
number is me.

For:=1,...,y, do
For each v € V with o(v) = do
b, — 0;
For each <w,v> € F with proc(w) = me do
?7@ — ?7@ — Loywl;
enddo
If proc(v) # me then
Send b, to proc(v);
else
b, — by;
For each update b, do
Receive update by;
b = by + by;
enddo
Yo — buf Loy
endif
enddo
enddo

Fic. 1. Parallel algorithm for the forward elimination of the lower triangular system Ly = b

In our implementation of this algorithm, all updates b, and b,, with o(v) = o(w)
to be sent from processor a to processor b are combined into one message. This combi-
nation overcomes the high cost of starting a message. We also note that the communi-
cation pattern for back substitution required to solve the system LTz = v is the exact
reverse of what is given in Figure 1. Rather than receiving the updates b, proc(v)
sends x, to the same processors it received updates from in the forward elimination
phase. Thus, the communication complexities of the forward elimination and back
substitution algorithms are equivalent.

3.1. Bounds on the Communication Complexity. Given certain assump-
tions, one can construct an analytic execution time model for the triangular matrix
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solutions required by the incomplete factorization algorithm. In this section we con-
struct such a model for a message-passing parallel computer. We make the following
assumptions about the partitioning of the problem across the processors.

1. Bounded connectivity — We assume that the problem is partitioned such that
processor 7 sends/receives at most an average of ¢; messages per level of the
DAG.

2. Load balancing — We assume that every processor has a roughly equal share
of the nodes of each level of the directed acyclic graph associated with the
triangular matrix solution.

We also assume that the time required to send k bytes between two processors, t(k),
obeys the linear relation

(3.3) t(k) = o+ Bk |

where « is the time for starting a message and [ is the time per byte for sending a
message.

Given these assumptions, we obtain a lower bound for the execution time, T, of
the algorithm on p processors:

(3.4) T > m_palx (T + acixe + Bvi) ,

where 7 is the time for a floating-point operation, z; is the number of floating-point
operations on processor ¢, v; is the number of bytes sent by processor ¢, ¢; is the average
number of messages sent per level of the DAG, and y, is the height of the DAG. Any
contention for communication paths in the interconnection network is ignored in this
model. The significance of this omission depends on the topology of the interconnection
network and the number and size of messages being sent.

The first assumption can be satisfied for most problems arising from physical mod-
els if they are properly partitioned; the second assumption is crucial and depends on
the ordering of the nodes. In this paper we compare the orderings produced by the
IDO heuristic with three other standard orderings: minimum degree (MDO), nested
dissection (NDO), and the reverse Cuthill-McKee ordering (RCM) [9]. If the problem
partition on each processor is similar in structure, then the second assumption holds
for the minimum degree ordering and the incidence degree ordering, because they are
locally generated orderings that impose no global structure on the matrix. For the
nested dissection heuristic, the second assumption holds if the heuristic is able find
good separators.

In contrast, the RCM ordering must violate one of these assumptions. If the ma-
trix is partitioned to maximize locality, (i.e., connected nodes are either on the same
processor or on a nearby processor), then it is the nature of the RCM ordering that
the nodes on each level of the DAG be on the same processor, giving an essentially
sequential algorithm. If the matrix is partitioned such that the nodes on each level
of the DAG are evenly distributed among the processors, the bounded connectivity
assumption must be violated; processors must send messages to most other processors
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at every level of the DAG. Fither condition is unacceptable, of course, when attempt-
ing to construct a scalable algorithm. In Section 4, we compare the model given in
equation (3.4) with experimental results obtained on the Intel iPSC/860.

An examination of this model reveals that the height of the DAG will be the major
factor in determining the efficiency of any ordering. The ordering of the matrix has
a significant effect on the height of the DAG; depending on the ordering, the height
could be as large as n or as small as the chromatic number. On all currently available
message-passing computers, « is significantly larger than 7 and 3 [6]. Thus, the message
volume contribution to the model is of secondary importance because of the relative
sizes of o and 3, and because, as we show below in Theorem 3.1, the message volume
cannot vary greatly between orderings.

We consider the message volume when using the inner-product algorithm for the
forward solve; messages are combined when possible. It is sufficient to consider the
volume of messages between two processors. Let Vi and V, be the set of vertices on
processors 1 and 2 that are connected to vertices on the other processor, and let Ny and
N, be the respective size of these sets. Let K5 be the set of edges that connect V; and
Va. Note that the graph, Gy = (V1, Vo, E12), is undirected and bipartite. Let M(G42)
be the size of a maximum matching for Gy5. Recall that a maximum matching is a
largest pairing of distinct vertices {(u1,v1),..., (ug, vg)} with u; € Vi and v; € V5 and
(u;,v;) € E1a. The following theorem gives a lower and upper bound to the message
volume between any two processors.

THEOREM 3.1. The minimum message volume that could be sent during the for-
ward elimination algorithm is M(G1z2). The mazimum message volume is Ny + Ny — 1.

Proof: As discussed above, assume that vertices of (G15 are ordered and labeled accord-
ing to a coloring of the graph. Consider the directed acyclic graph Dy = (V4, Va, Fis)
constructed from this ordering, where Fi, are the directed edges corresponding to Fy,.
For each edge, < v,w > € Fiy, v contributes to the inner product associated with w
in the forward elimination algorithm. An example of such a directed graph is given in
Figure 2.

It there exist directed edges < u,w > and < v,w > in Fiy, then we have two
contributions to the inner product associated with w. There is no need to send both
partial sums; instead, the two partial sums can be added together on one processor,
and only one partial sum sent to its neighbor. We can reflect this combination in a
graph construction where, for each edge <v,w > in Fiy, we remove all edges <u,w >
with v < v. After all such edges are removed, we denote this modified graph by
Diy = (Vi, V4, FY,). Note that the number of edges in [} is equal to the number of
vertices in Dy that are terminals of directed edges (the vertex v is a terminal if there
exists an edge <wu,v>in Fiy). The remaining edges in the graph D7y, represent all the
partial sums that must be communicated in the forward elimination algorithm, and
therefore the total message volume between the two processors. An example of a graph
D1y and its reduced graph D7, is given in Figure 2.

Consider a maximum matching of the bipartite graph G12. In the directed graph
D15 there are at least M((13) terminals of directed edges, because each matched edge

will be directed to a distinct vertex in Dy;. Since the number of edges in [}, is equal
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Fia. 2. An example of the graph Dys and its reduced graph D7, representing the communicated
partial sums

to the number of terminals in Fiy, we have that |F}5| > M(Ghz2). To get an upper
bound, we note that at most Ny + Ny — 1 vertices can be terminals of directed edges

n D12; thus, |F1*2| S N1 + N2 — 1. O

We note that if one partitions the nodes of a standard finite element into two
equal sets, the resulting graph partition will contain a perfect matching, since the cor-
responding graph is a clique. Likewise, for problems arising from physical applications,
one expects M((G12) to be close to min (N, Ny) for the partitioned graph. Thus, the
following corollary explains why one would expect less than a factor of 2 difference in
message volume between different orderings.

COROLLARY 3.2. If G5 has a perfect matching, then the message volume differs
by at most 2 for any two orderings.

Proof: If GGi5 has a perfect matching, we have that Ny = Ny = M(G13). By Theo-
rem 3.1 we have that the upper and lower bounds for the message volume differ by less
than 2. Thus, the message volume for any two orderings cannot differ by more than
this amount. O

THEOREM 3.3. The mazimum number of messages that could be sent during the
forward solve is Ny + Ny — 1. The minimum number of messages is one.

Proof: Clearly, the number of messages sent cannot exceed Ny 4+ Ny —1. To construct a
worst case example, suppose (G5 contained a simple path that included all the vertices
in G2. We could then obtain a coloring o by numbering the vertices consecutively,
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in the order in which they were visited along this path. The height of the resulting
DAG Di3 is N1 + Ny and the number of terminals would be Ny + Ny — 1. Therefore,
Ny + Ny — 1 messages must be sent.

To show that the minimum number of messages is one, we could order the nodes in
V1 before the nodes in V5. All the inner products associated with V; can be computed
without partial sums from V5. Then all partial sums contributed by nodes in Vi can
be sent in a single message to processor 2. 0O

The forward elimination algorithm presented in Figure 1 could also be written to
use sparse “daxpy” operations in the inner loop, as opposed to sparse inner products.
We note that the communication pattern required by the daxpy-based algorithm is
the same as that required by the inner product algorithm with the vertex ordering
reversed. Thus, the results presented above would apply to the forward elimination
algorithm if the algorithm were rewritten in this manner.

4. Experimental Results. We divide the experimental results section into two
parts: (1) an evaluation of the performance of the coloring heuristic, and (2) an evalu-
ation of the scalability of the combination of the IDO heuristic and incomplete factor-
ization. The majority of the matrices in the test set arise from finite element models.
Although it is possible to take advantage of the underlying structure of many finite
elements problems, we wish to be more general and, therefore, only use information
present in the assembled matrices.

A finite element model is constructed by piecing together many elements to approx-
imate a structure. Each element typically contains & > 2 nodes, each node typically
having 1 < d < 6 degrees of freedom (dof), resulting in kd unknowns per element.
Adjacent elements share nodes, reducing the total number of unknowns. Also, the
number of unknowns may be reduced by other factors, including the application of
constraints on the structure.

The subgraph containing these unknowns is usually completely connected and thus
comprises an r-element, with r = kd. Many different element types, of course, can be
included in a model. The coloring heuristics can be expected to perform well on these
matrices because of the local nature of the models and the bound of kd on the maximum
clique size.

For the sake of comparison, matrices arising from the five-point and nine-point
finite-difference discretizations on a 30 x 30 grid were included in the test suite. It is
well known that matrices arising from these stencils can be colored by using two and
four colors, respectively.

In Table 1, the complete suite of test problems is described.? The diagonal of each
matrix was scaled to be the identity matrix. For every problem except the BUILDING
and PLATE problems, the right-hand side was the vector of ones, scaled to have a 2-
norm of one. The initial guess for the conjugate gradient algorithm was the zero vector.
Solutions were sought to a relative accuracy of 0.001, where the relative accuracy at

? Because of the application of constraints and the elimination of superfluous degrees of freedom,
the maximum clique size for several of the problems is less than the maximum number of degrees of
freedom per node times the number of nodes per element.
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TABLE 1
The suite of test problems

‘ Name H Size ‘ Description
LAP5 900 | 5-pt finite difference discretization on a 30x30 grid
LAPY 900 | 9-pt finite difference discretization on a 30x30 grid
CUBE3 180 | finite element model of a cube with 3x3x3 8-node
elements with 3 degrees of freedom per node
CUBE5 636 | finite element model of a cube with 5x5x5 8-node
elements with 3 degrees of freedom per node
CUBET 1524 | finite element model of a cube with 7x7x7 8-node
elements with 3 degrees of freedom per node
CYL11 510 | finite element model of a circular cylindrical shell
with 100 4-node elements with up to 6 dof per node
PLT4 327 | finite element model of a plate with 64 4-node
elements with up to 6 dof per node
PLT9 1295 | finite element model of a plate with 64 9-node
elements with up to 6 dof per node
PLANE 2141 | finite element model of a airplane with a mixture of
2-D element types
BUILDING 6000/story | finite element model of a building using 3-D
“brick” elements, the number of stories can vary
PLATE 1500/section | finite element model of a plate using 3-D
“brick” elements, the number of sections in the
X and Y directions, but not the 7, can vary

step k is defined as ||7k||2/||ro||2, where 7 is the residual at step k. When the incomplete
Cholesky factorization failed, we use the shifted incomplete factorization method [18]
and add 0.01 to the diagonal until the factorization succeeded.

4.1. Coloring Heuristic Results. We tested the performance of the IDO heuris-
tic on the first nine, smaller problems in Table 1. An examination of the results in
Figure 3 shows that, for every problem, IDO found optimal or near-optimal colorings.
A lower bound for the chromatic number was obtained by finding a large clique. The
determination of the largest clique in a general graph is an NP-hard problem. We have
used a heuristic to find a large clique, which is reported as clique (). Therefore, if the
lower bound is not tight, there may exist a larger clique than this number.

4.2. Scalability Results. We compared the matrix ordering derived from the
IDO graph coloring heuristic to three orderings that are applicable to general undirected
graphs. The reverse Cuthill-McKee (RCM) heuristic has been shown in numerous
tests to be the best, or nearly the best, ordering for the convergence of the ICCG(0)
algorithm [5]. The nested dissection heuristic has been shown to be effective when
reordering a matrix to both reduce fill-in and increase the parallelism of a direct, sparse
factorization. While not as good as RCM in terms of convergence of ICCG(0), the
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nested dissection heuristic was often near optimal [5]. The minimum degree ordering
is the most commonly used fill reducing algorithm for direct sparse factorization; it is
generally far from optimal in terms of convergence of ICCG(0) [5]. A good description
of these heuristics can be found in [9].

The objective in this section is to show that a good coloring heuristic, in combina-
tion with incomplete factorization, is a scalable algorithm whose parallel performance
is superior to that of standard orderings. Specifically, we show two results: (1) for the
problems considered, the parallel efficiency and the total solution time for the multi-
coloring incomplete factorization approach is superior to other orderings, even though
this ordering can have deleterious effects on convergence, and (2) the multicoloring
algorithm is scalable as defined in [11].

To carry out our experiments, we selected the last two problems from Table 1,
which could be scaled in size. Because of space considerations, we do not in every case
present results for both problems, but generally the results are similar. The initial
numbering of the equations was such that nearby nodes in the finite element models
were generally close in number. Each processor was assigned a contiguous block of n/p
columns, where n is the order of the matrix and p is the number of processors. This
partitioning reduces the number and volume of messages that must be sent.

The effect of orderings on the convergence ICCG must be taken into account
[5]. For model grid problems, Elman and Agron [7] used a parameter study of a
theoretical computational model to show that the cost of increased iterations needed for
multicoloring was usually worth the benefit of increased parallelism. In our experiments
we examine this benefit on the Intel iPSC/860. In Figures 4 and 5 we give the number
of iterations for both problems using all four orderings. For the PLATE problem,
which is geometrically similar to a model grid problem, the iteration counts for each of
the orderings are close to what we expect from [5], with the exception of the iteration
count for nested dissection which is higher than might be expected. This increase could
result from an inability of the nested dissection heuristic to determine a good ordering
because of the three-dimensional nature of this problem.

An examination of Figure 5 reveals that for the BUILDING problem, which is
far from a model grid problem, the iteration counts are not similar to those from
[5]. This discrepancy can be attributed to two factors: (1) different-sized shifts were
needed for the orderings to obtain a positive definite preconditioner, and (2) unlike
the model grid problem, where the orderings can be explicitly and regularly applied,
the orderings for general graphs are heuristics whose effect is not as structured as for
the model grid problems. This discrepancy has been observed in other “non-model”
problems; however, in general we find that the RCM and nested dissection orderings
are superior to the coloring and minimum degree orderings in terms of convergence
[15]. It is interesting to note that the number of iterations in each problem grows as
predicted in [3]: linearly with the relative refinement. In the PLATE problem, when
the problem size quadruples, the relative refinement doubles in the X and Y directions,
and the number of iterations doubles. In the BUILDING problem, when the problem
size doubles, the relative refinement doubles in the 7 direction, and the number of
iterations doubles.

12



500

300
200

Number 100
of
Iterations 50 -

30 1
20

10 == l T T T T |
1 2 4 8 16 32 64

Number of Processors

Fic. 4. The number of iterations for the PLATE problem

2500
1000

Number
500

of

Iterations 200 -
200
100

2 4 8 16 32 64

Number of Processors

Fia. 5. The number of iterations for the BUILDING problem

13



10000

RCM .-
1000
Total
Time
(sec.)
100
10 I T I I T |

2 4 8 16 32 64

Number of Processors

Fia. 6. Total execution temes for the BUILDING problem

Given that colorings generally have a negative effect on convergence, we must show
that their parallel efficiency is sufficiently superior to other orderings to justify their
use as an ordering. To show this, we give total execution time, the time for both
the incomplete factorization and the triangular matrix solutions, for the BUILDING
problem in Figure 6. Note that each axis of the graph has a logarithmic scale. From
this figure, it is clear that the multicolor ordering gives rise to better parallel execution
times than the other orderings.

We now examine the parallel efficiency to show that it is asymptotically constant
for the multicoloring algorithm. We give the computation rates for the forward trian-
gular matrix solution for the BUILDING problem in Figure 7. The trends are similar
for the incomplete factorization and for the backward triangular matrix solution and
are not shown. For more than 16 processors it can be concluded that the computational
rates for the multicoloring algorithm are essentially constant and are much higher than
those for the other orderings. The minimum degree and nested dissection orderings
appear to be almost scalable. As discussed above, the nested dissection must be able to
find good global separators to be successtul, unlike the minimum degree and multicolor
orderings which are local ordering hueristics. However, the RCM algorithm is clearly
not scalable.

It is instructive to observe both the number of messages and the message volume
associated with each ordering. Given that the amount of computation on each processor
is close to constant, the message traffic is a good indicator of performance. We give
these numbers for the BUILDING problem in Figures 8 and 9. Not surprisingly, the
number of messages is lowest for IDO and highest for RCM. Also, as expected, IDO
has the highest message volume. As predicted by Corollary 3.2, the message volume
varies by less than a factor of 2 between the different orderings.

We now validate the model from Section 3 using results from the PLATE prob-

14



3.5 7

3.0+
IDO
2.5
~
Mflops 209 "~ NN
per ‘~\\§
Processor 1.5 N
‘\\\\\\
TS~ NDO
1.0+ eI
MDO
0.5
RCM
0.0 — | | | - |
2 4 8 16 32 64
Number of Processors
Fia. 7. Megaflop rate per processor for forward solves on BUILDING problem
500 - TR
400
Number 300 4 MD?},,,:':’:::”:; - T
LT NDO
of s -
Messages y //,/’/
200 e
e
7
7
100 IDO
0 | | | | | 1
2 4 8 16 32 64

Number of Processors

Fia. 8. The average number of messages sent per processor

15



10000

8000

Message 6000 -

Volume
per
Processor 4000 ~

2000

0-—— T l T T |
2 4 8 16 32 64

Number of Processors

Fia. 9. The average number of bytes sent per processor

lem. Estimated and actual execution times are given in Figure 10. The model does
a reasonable job of predicting performance for the IDO ordering. The gap is likely
caused by two factors: (1) time for the data structure manipulation associated with
packing messages, and (2) contention among messages for edges in the interconnection
network.

5. Conclusions. Our results have shown that for the matrices considered the col-
oring heuristics find close to optimal colorings. The combination of the graph coloring
and incomplete factorization was shown to result in a scalable, parallel algorithm. The
increase in parallelism afforded by this reordering more than offsets any of the increases
seen in the number of iterations required for convergence over other commonly used
ordering heuristics. Lastly, we note several topics possibly requiring additional study.

The coloring produced by the heuristic may often leave a single color with very
few nodes. One solution to this problem is to remove from the graph the constraining
edges associated with those nodes [15] and use this smaller graph as the structure for
the triangular system. However, a better approach would be an algorithm that could
try to recolor a subset of the nodes to eliminate this problem.

It is well known that the convergence rate of ICCG can be improved by allowing
limited fill-in during the incomplete factorization. If edges in the graph between nodes
of the same color are not created during factorization, then such fill-in will not reduce
the level of parallelism. In fact, such fill-in should increase the computation to com-
munication ratio. However, by disallowing fill-in from occurring in particular edges,
we may reduce the effect of fill-in on the convergence rate.

To demonstrate scalability we used problems in which the same element type was
used throughout the structure. If the element mix on each processor was significantly
different, then the number of nodes in each color might vary greatly on each processor.
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This situation would result in a workload imbalance. However, this problem can be
addressed by restricting the number of nodes on each processor that can be colored
the same color, or by “shuffling” the colors to balance them.

Finally, a significant pitfall for the straightforward incomplete factorization algo-
rithm is that it may fail to produce a positive-definite factorization, even though the
matrix is positive definite. Because positive definiteness is required for the conjugate
gradient method [10], some mechanism must be included to deal with the detection of
indefiniteness during the incomplete factorization process. It is not sufficient to simply
change a diagonal that becomes non-positive during the factorization to become nega-
tive; this approach will often result in a poor preconditioner because the non-positive
diagonal was caused by something that occurred earlier during the factorization and
remains in the incomplete factor. For the results presented in this paper, we have used
the technique of adding an increasing multiple of the diagonal until the matrix can
be successfully factored. However, we note that an improvement of these methods for
forcing a positive definite factorization while still maintaining a good preconditioner is
an important area for future research.
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